Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lei Cao, $=$ Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
\ddagger also at Institute of Geological Survey of Jiangsu Province, Nanjing, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.104$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tris(1H-benzimidazole- κN^{3})(thiodiacetato$\left.\kappa^{3} O, S, O^{\prime}\right)$ cobalt(II) dihydrate

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Co}^{\text {II }}$ ion is coordinated by one thiodiacetate dianion and three benzimidazole molecules, with a distorted octahedral geometry. The tridentate thiodiacetate chelates to the Co atom in a facial configuration, with a $\mathrm{Co}-\mathrm{S}$ bond distance of 2.5597 (8) A. Intermolecular hydrogen bonding prevents the face-to-face stacking of neighboring benzimdazole ligands.

Comment

Several crystal structures of metal complexes incorporating benzimidazole $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right.$; bzim) as a ligand show $\pi-\pi$ stacking between neighboring aromatic rings (Chen et al., 2003; Liu \& Xu, 2004; Bukowska-Strzyzewska \& Tosik, 1983). As part of our ongoing investigations on the nature of $\pi-\pi$ stacking in metal complexes, (Li et al., 2005), the title bzim complex of $\mathrm{Co}^{\mathrm{II}}$, (I) (Fig. 1), is presented here.

(I)

The $\mathrm{Co}^{\text {II }}$ atom is coordinated by three bzim molecules and one tridentate thiodiacetate dianion $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~S}^{2-}\right.$; tda) in a distorted octahedral coordination (Table 1). The tda ligand adopts a facial configuration, consistent with that found in triimidazole(thiodiacetato)nickel(II) (Pan \& Xu, 2005). The five-membered chelate rings of the tda display envelope conformations, with the Co atom lying at the flap position, displaced from the mean planes formed by the other four atoms by 0.370 (5) and 0.836 (4) \AA for the O1 and O3 rings, respectively. The $\mathrm{Co}-\mathrm{S}$ bond distance in (I) is slightly longer [by 0.0848 (11) Å] than the equivalent $\mathrm{Ni}-\mathrm{S}$ bond distance found in the above-cited $\mathrm{Ni}^{\mathrm{II}}$ complex.

Extensive hydrogen bonding (Table 2) occurs in the crystal structure of (I). As shown in the packing diagram (Fig. 2), the uncoordinated tda carboxyl O atoms link with the bzim ligands of neighboring complexes via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, preventing any close $\pi-\pi$ stacking (minimum centroid separation $=4.43 \AA$) of neighboring bzim ligands in the crystal structure of (I).

Received 8 February 2006
Accepted 16 February 2006

Experimental

An aqueous solution (15 ml) solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$, $\mathrm{H}_{2} \mathrm{tda}(1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ was mixed with an ethanol solution (5 ml) of bzim (2 mmol). The solution was refluxed for 6 h and then filtered. Single crystals of (I) were obtained after 6 d .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$M_{r}=597.51$

Orthorhombic, Pbca
$a=10.3428$ (4) \AA
$b=19.8783$ (4) \AA
$c=25.8749$ (8) A
$V=5319.8(3) \AA^{3}$
$Z=8$
$D_{x}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
$T_{\text {min }}=0.888, T_{\text {max }}=0.955$
46075 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.104$
$S=1.05$
6053 reflections
352 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0379 P)^{2}\right.} \\
&+3.8108 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation

Cell parameters from 28828 reflections
$\theta=1.9-27.4^{\circ}$
$\mu=0.78 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Plate, red
$0.24 \times 0.20 \times 0.06 \mathrm{~mm}$

6053 independent reflections
3934 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.095$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-25 \rightarrow 24$
$l=-33 \rightarrow 33$

Table 1
Selected bond lengths (\AA).

Co-S	$2.5597(8)$	Co-N13	$2.154(3)$
Co-O1	$2.056(2)$	Co-N23	$2.109(2)$
Co-O3	$2.156(2)$	Co-N33	$2.136(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
	0.95	2.04	2.870 (4)	145
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 4$	0.96	1.85	2.805 (4)	177
O6-H6A . ${ }^{\text {O2 }}$	0.94	1.93	2.769 (4)	148
O6-H6B $\cdots \mathrm{O}^{\text {ii }}$	0.96	1.88	2.816 (4)	162
$\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O} 4{ }^{\text {iii }}$	0.86	1.93	2.766 (4)	163
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{O}^{\text {iv }}$	0.86	2.39	3.217 (3)	161
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{O} 4^{\text {iv }}$	0.86	2.42	3.072 (3)	133
$\mathrm{N} 31-\mathrm{H} 31 \cdots \mathrm{O} 2^{\mathrm{v}}$	0.86	1.93	2.780 (4)	168

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $x+1, y, z$; (iv) $x+\frac{1}{2},-y+\frac{3}{2},-z+1 ;(\mathrm{v})-x+\frac{3}{2}, y+\frac{1}{2}, z$.

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with fixed $U_{\text {iso }}(\mathrm{H})$ $=0.05 \AA^{2}$. Other H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.93-0.97 ; \mathrm{N}-\mathrm{H}=0.86 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/

Figure 1
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds.

Figure 2
The packing of (I), showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dashed lines. Non-coordinated water molecules and H atoms have been omitted for clarity.

MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was supported by the National Natural Science Foundation of China (grant No. 20443003).

metal-organic papers

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bukowska-Strzyzewska, M. \& Tosik, A. (1983). Acta Cryst. C39, 203-205.
Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Liu, Y. \& Xu, D.-J. (2004). Acta Cryst. E60, m1002-m1004.
Pan, T.-T. \& Xu, D.-J. (2005). Acta Cryst. E61, m1735-1737.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC and Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

